Home
Class 12
MATHS
If un=int0^(pi/2)thetasin^nthetad theta ...

If `u_n=int_0^(pi/2)thetasin^nthetad theta` and `n>=1`, then prove that `u_n=((n-1)/n) u_(n-2)+1/n^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_4-u_6)/(u_2-u_4)=1/2 .

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_5-u_7)/(u_3-u_5)=(u_3)/(u_1) .

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_5-u_7)/(u_3-u_5)=(u_3)/(u_1) .

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_5-u_7)/(u_3-u_5)=(u_3)/(u_1) .

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_5-u_7)/(u_3-u_5)=(u_3)/(u_1) .

if I_n=int_0^(pi/4)tan^ntheta.d theta,then n in N,n(I_(n-1)+I_(n+1)) equals

If u_(n)=sin^(n)theta+cos^(n)theta, then prove that (u_(5)-u_(7))/(u_(3)-u_(5))=(u_(3))/(u_(1))

If u_(n)=sin(n theta)sec^(n)theta,v_(n)=cos(n theta)sec^(n)thetan in Nn!=1 then (v_(n)-v_(n-1))/(u_(n-1))+(1)/(n)((u_(n))/(v_(n)))=

If U_(n) = int_0^(pi/4) tan^(n) x dx then u_(n)+u_(n-2) =

If u_(n)=sin^(n)alpha+cos^(n)alpha , then prove that 2u_(6)-3u_(4)+1=0 .