Home
Class 12
MATHS
If In=int(a^2+x^2)^(n/2)dx ,then show th...

If `I_n=int(a^2+x^2)^(n/2)dx` ,then show that `I_n=((x(a^2+x^2)^(n/2))/(n+1))+(na^2)/(n+1)I(n-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n=intsqrt((a^2+x^2)^n)dx , Prove that: I_n=(xsqrt((a^2+x^2))^n)/(n+1)+(na^2)/(n+1)int(a^2+x^2)^(n/2-1)dx

If I_n=intsqrt((a^2+x^2)^n)dx , Prove that: I_n=(xsqrt((a^2+x^2))^n)/(n+1)+(na^2)/(n+1)int(a^2+x^2)^(n/2-1)dx

If I_n=int x^nsqrt(a^2-x^2)dx, prove that I_n=-(x^(n-1)(a^2-x^2)^(3/2))/((n+2))+((n+1))/((n+2))a^2I_(n-2)

If I_n=int x^nsqrt(a^2-x^2)dx, prove that I_n=-(x^(n-1)(a^2-x^2)^(3/2))/((n+2))+((n+1))/((n+2))a^2I_(n-2)

If I_n=intdx/(x^2+a^2)^n,ninN , then show that: I_(n+1)=1/(2na^2)x/((x^2+a^2)^n)+(2n-1)/(2n). 1/a^2I_n

If I_n=intdx/(x^2+a^2)^n,ninN , then show that: I_(n+1)=1/(2na^2)x/((x^2+a^2)^n)+(2n-1)/(2n). 1/a^2I_n

Show that If I _(n) =int cos ^(n) x dx, then show that I_(n) =1/n cos ^(n-1) x sin x + (n-1)/(n ) I_(n-2).

If I_(n)=int x^(n)sqrt(a^(2)-x^(2))dx, prove that I_(n)=-(x^(n-1)(a^(2)-x^(2))^((3)/(2)))/((n+2))+((n+1))/((n+2))a^(2)I_(n-2)

If I_(n)=int sin^(n)x dx , show that, I_(n)=-(1)/(n) sin^(n-1)x cosx+(n-1)/(n).I_(n-2) . Hence, evaluate, int sin^(6)x dx .

If I_n = int tan^n x dx , then prove that I_n = (tan^(n-1) x)/(n - 1) - I_(n - 2) . Hence find int tan^7 x dx