Home
Class 13
MATHS
" (i) If "omega" is a non-real cube root...

" (i) If "omega" is a non-real cube root of unity,then prove that "|(x+y omega+z omega^(2))/(x omega+z+y omega^(2))|=1" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is non-real cube roots of unity,then prove that |(x+y omega+z omega^(2))/(xw+z+y omega^(2))|=1

If 1, omega, omega^(2) are three cube roots of unity, prove that (1 + omega - omega^(2)) (1- omega + omega^(2))=4

If omega is a non-real cube root of unity,then the value of (1-omega+omega^(2))^(5)+(1+omega-omega^(2))^(5) is

If omega is a non real cube root of unity then (a+b)(a+b omega)(a+b omega^(2)) is

If omega is a non real cube root of unity, then (a+b)(a+b omega)(a+b omega^2)=

If omega be an imaginary cube root or unity, prove that (x+y omega+ z omega^(2))^(4)+ (x omega+ y omega^(2)+z)^(4)+(x omega^(2)+y+ z omega)^(4)=0

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a non real cube root of unity, then (a+b)(a+b(omega))(a+b(omega)^2) is

If 1, omega, omega^(2) are cube roots of unity, prove that (x + y)^(2) + (x omega + y omega^(2))^(2) + (x omega^(2) + y omega)^(2)= 6xy

If omega is a cube root of unity, prove that (1+omega-omega^2)^3-(1-omega+omega^2)^3=0