Home
Class 10
MATHS
sin sqrt(1-x^(2))+x^(2)cos4x...

sin sqrt(1-x^(2))+x^(2)cos4x

Promotional Banner

Similar Questions

Explore conceptually related problems

3cos^(-1)x=sin^(-1)(sqrt(1-x^(2))(4x^(2)-1))

The derivative of the function f(x)=cos^(-1)((1)/(sqrt(13))(2cos x-3sin x))+sin^(-1)((1)/(sqrt(13))(2cos x+3sin x)), with respect to sqrt(1+x^(2)) at x=(3)/(4) is

int (1)/(sqrt(sin^(2) x cos^(2) x - sin^(4) x)) dx =

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

cos^(-1)x= 2 sin ^(-1) sqrt((1-x)/(2))=2 cos ^(-1)""sqrt((1+x)/(2))=2tan^(-1)""(sqrt(1-x^(2)))/(1+x)

If (pi)/(4)

If cos (pi/12) = (sqrt(2) + sqrt(6))/(4) , then all x in (0,pi/2) such that (sqrt(3)-1)/(sin x) + (sqrt(3)+1)/(cos x) = 4sqrt(2) , then find x.

If cos (pi/12) = (sqrt(2) + sqrt(6))/(4) , then all x in (0,pi/2) such that (sqrt(3)-1)/(sin x) + (sqrt(3)+1)/(cos x) = 4sqrt(2) , then find x.

cos x-sin x = sqrt (2) cos (x + (pi) / (4))