Home
Class 12
MATHS
" Prove that "int(0)^(oo)log(e)(x+(1)/(x...

" Prove that "int_(0)^(oo)log_(e)(x+(1)/(x))(dx)/(1+x^(2))=pi log_(e)2

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : int_(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log_(e) 2

int_(1)^(2) (log_(e) x)/(x^(2)) dx

int_(1)^(x)log_(e)[x]dx

int_(0)^(1)(log_(e)(1+x))/(1+x^(2))dx

int_(a=)^(oo)ln(x+(1)/(x))(dx)/(1+x^(2))dx=(pi)/(2)ln a then

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2