Home
Class 12
MATHS
If u= log (1+x^(2)) and v=x -tan ^(-1) ...

If ` u= log (1+x^(2)) and v=x -tan ^(-1) x,then(dy)/(dx) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If v = log ( 1 + x^(2)) and u = x - tan^(-1) x then ,( du)/( dv) is equal to

if y=x^(ln x)tan^(-1)x then find (dy)/(dx) at x=1

If log sqrt(x^(2)+y^(2))=tan^(-1)((y)/(x)),then(dy)/(dx) is

y=log tan((x)/(2))+sin^(-1)(cos x), then (dy)/(dx) is

If y = e ^((1//2) log (1 + tan ^(2) x), ) then (dy)/(dx) is equal to :

If x=log(1+t^(2)),y=t-tan^(-1)t , show that (dy)/(dx)=sqrt(e^(x)-1)/(2)

If y = Tan^(-1)(log x) then find (dy)/(dx)

If f^(1)(x)=(1)/(1+(ln x)^(2)) and y=f(e^(tan x)) then (dy)/(dx) is equal to

If u=tan^(-1){(sqrt(1+x^2)-1)/x} and v=2tan^(-1)x , then (d u)/(d v) is equal to......