Home
Class 12
MATHS
The ellipse (x^(2))/(25)+(y^(2))/(16)=1 ...

The ellipse `(x^(2))/(25)+(y^(2))/(16)=1` and the hyperbola `(x^(2))/(25)-(y^(2))/(16) =1` have in common

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the parabola y^(2)=20x, ellipse (x^(2))/(16)+(y^(2))/(9)=1 and hyperbola (x^(2))/(29)-(y^(2))/(4)=1 The equation common tangent to all of them, is

If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide, the find the value of b^(2) .

If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide,then find the value of b^(2)

If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide write the value of b^(2).

If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide then the value of b^(2) is

The eccentricity of the hyperbola (x^(2))/(25)-(y^(2))/(16)=1 is

The length of common tangent to the ellipses (x^(2))/(16)+(y^(2))/(9)=1 and (x^(2))/(9)+(y^(2))/(16)=1 is