Home
Class 12
MATHS
For x gt 0, underset( x rarr 0) ( "Lim")...

For `x gt 0, underset( x rarr 0) ( "Lim") [ ( sin x)^(1//x) + ((1)/( x))^("sinx ) ]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

underset( x rarr 0 ) ("Lim") [ ((1+x)^(1//x))/( e ) ]^(1//x)

underset( x rarr 0 ) ( "Lim") ((x- 1+ cos x )/( x))^((1)/( x))

Find underset( x rarr 0 ) ( "Lim") ( e^(sinx) -sin x -1)/( x^(2))

Find underset( x rarr 0 ) ( "Lim") ( e^(sin x) -sin x -1)/( x^(2))

Find underset( x rarr0 ) ( "Lim") ( tan x - sin x )/( x^(3))

For x gt 0, lim_(x rarr 0) ((sin x)^(1//x) + ((1)/(x))^(sin x)) is :

Evaluate: underset(x rarr 0)(lim) x^(sin x)

Evaluate underset( x rarr0 ) ( "Lim") ( 3 sin x - sin 3x)/( x- sin x )

Evaluate underset( x rarr0 ) ( "Lim")( e^(x) - e^(-x)-2x)/( x - sin x )

underset( x rarr 0 ) ( "lim")((1+sin x )/( 1- sin x ))^("cosec x ") is equal to :