Home
Class 12
MATHS
प्रारम्भिक पंक्ति संक्रिया R(1) rarr R...

प्रारम्भिक पंक्ति संक्रिया `R_(1) rarr R_(1)-3R_(2)` का प्रयोग आव्यूह समीकरण `[(4,2),(3,3)]=[(1,1),(0,3)][(2,0),(1,1)]` में करने पर हमें प्राप्त होता है :

Promotional Banner

Similar Questions

Explore conceptually related problems

Use the elementary row operation R_(1) to R_(1)-3R_(2) in the matrix equation [{:(4,2),(3,3):}]=[{:(1,2),(0,3):}][{:(2,0),(1,1):}]

On using row operation R_(1)rArrR_(1)-3R_(2) in the following matrix equation [{:(4,2),(3,3):}]=[{:(1,2),(0,3):}][{:(2,0),(1,1):}] we have

On using the elementary row operation R_(1) to R_(1)-3R_(2) in the matrix equation [{:(4,2),(3,3):}]=[{:(1,2),(0,3):}] [{:(2,0),(1,1):}] we get

[(1,-1),(2,3)]=[(1,0),(0,1)] A,R_(2) rarr R_(2)-2R_(1) gives

On using elementary row operation R_(1)toR_(1)-3R_(2) in the following matrix equation : [{:(4,2),(3,3):}]=[{:(1,2),(0,3):}]*[{:(2,0),(1,1):}]

A=[[1,0-1,3]],R_(1)harr R_(2)

Let X = { 1,2,3,4 } and R = { (1,1), (1,2),(1,3),(2,2), (3,3),(2,1),(3,1),(1,4),(4,1)}. Then R is

On using clementary row operation R_1 to R_1-3 R_2 in the following matrix equation [[4,2],[3,3]]=[[1,2],[0,3]][[2,0],[1,1]] we have,

If R={(1,-1),(2,0),(3,1),(5,3)} is a relation then R^(-1) is

A relation R on A is as follows R = { (0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)} for A = {0,1,2,3} . Then R is