Home
Class 9
MATHS
If x^(2)-px+8=(x-2)(x-4) be an identity ...

If `x^(2)-px+8=(x-2)(x-4)` be an identity , then p =

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)-px+12=(x-3)(x-a) be an identity , then the values of a and p are respectively-

Let px^4+qx^3+rx^2+sx+t=|{:(x^2+3x,x-1,x+3),(x+1,-2,x-4),(x-3,x+4,3x):}| be an identity where p,q,r,s and t are constants, then the value of s is equal to

If |(x^2+x, x-1, x+1), (x, 2x, 3x-1), (4x+1, x-2, x+2)|= px^4 +qx^3+rx^2+sx+t be n identity in x and omega be an imaginary cube root of unity, (a+bomega+comega^2)/(c+aomega+bomega^2)+(a+bomega+comega^2)/(b+comega+aomega^2)= (A) p (B) 2p (C) -2p (D) -p

If |(x^2+x, x-1, x+1), (x, 2x, 3x-1), (4x+1, x-2, x+2)|= px^4 +qx^3+rx^2+sx+t be n identity in x and omega be an imaginary cube root of unity, (a+bomega+comega^2)/(c+aomega+bomega^2)+(a+bomega+comega^2)/(b+comega+aomega^2)= (A) p (B) 2p (C) -2p (D) -p

If - 4 is common root for the quadratic equations 2x^(2) + px + 8 = 0 and p(x^(2) + x) + k = 0 then find the value of 'k'.

If the 5^(th) term of ((q)/(2x)-px)^(8) is 1120 and p+q=5,p>q>0, then p=

If the root of the equation of the polynomial p(x)=8x^(3)-px^(2)-4x+2 be 1/2 , then calculate the value of p.

If x^(2)+2x-5 is a factor of x^(4)-2x^(3)+px^(2) +qx-35 , then find the value of p^(2)-q .

(x+xy^(2)-p)x(x^(3)+y^(2)-px)

If both roots are common to the Quadratic equations x^2-4 = 0 and x^2 + px-4 = 0 , then p =