Home
Class 12
MATHS
If A(n)=int(0)^(npi)|sinx|dx, AA n in N,...

If `A_(n)=int_(0)^(npi)|sinx|dx, AA n in N`, then `Sigma_(r=1)^(10)A_(r)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(n)=n(n!), then sum_(r=1)^(100)a_(r) is equal to

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

If A_(r)=[((1)/(r(r+1)),(1)/(3^(r ))),(2,3)] , then lim_(nrarroo)Sigma_(r=1)^(n)|A_(r)| is equal to

If A_(r)=[((1)/(r(r+1)),(1)/(3^(r ))),(2,3)] , then lim_(nrarroo)Sigma_(r=1)^(n)|A_(r)| is equal to

Given that a_(n)=int_(0)^(pi) (sin^(2){(n+1)x})/(sin2x)dx What is a_(n-1)-a_(n-4) equal to ?