Home
Class 11
MATHS
(a) tan theta = cot theta " ...

`(a) tan theta = cot theta " " ( b) 2 cot^(2) theta = cosec^(2) theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (tan theta + cot theta)^(2) = "sec"^(2) theta + "cosec"^(2)theta = "sec"^(2) theta. "cosec"^(2) theta .

"cosec"^(2) theta * cot^(2) theta -sec^(2) theta * tan^(2) theta - (cot^(2) theta - tan^(2) theta ) (sec^(2) theta * "cosec"^(2) theta -1)=

The value of cosec ^(2) theta cot ^(2) theta - sec ^(2) theta tan ^(2) theta -(cot ^(2) theta- tan ^(2) theta) (sec ^(2) theta cosec ^(2) theta -1) is-

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .

If "cosec" theta + cot theta = (13)/5 then cot^(2) theta - "cosec"^(2) theta = (25)/12

cosec^(4)theta+cot^(2)theta+cosec^(2)theta)"=

Prove each of the following identities : (i) ("cosec"theta + cot theta )/("cosec"theta - cot theta ) = ("cosec" theta + cot theta)^(2) = 1+2cot^(2) theta + 2"cosec" theta cot theta (ii) (sec theta + tan theta ) /( sec theta - tan theta) =(sec theta + tan theta )^(2) = 1+ 2tan^(2) theta + 2 sec theta tan theta

Prove that (1+ cot theta + tan theta ) ( sin theta - cos theta) = (sec theta )/(cosec^(2) theta) - (cosec theta)/(sec^(2)theta) .

Prove that (tan^(3) theta)/(1 + tan^(2) theta) + (cot^(3) theta)/(1+ cot^(2) theta) = sec theta cosec theta - 2 sin theta cos theta