Home
Class 12
MATHS
" If "f(3)=-2" and "f(2)=4," then the va...

" If "f(3)=-2" and "f(2)=4," then the value of "lim_(x rarr0)(f(x^(2)-2x+3)-f(3))/(f(x^(2)+x+2)-f(2))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=k,k!=0, then the value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

If f'(2)=6 and f'(1)=4 ,then lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1)) is equal to ?

If f'(2)=4 then,evaluate lim_(x rarr0)(f(1+cos x)-f(2))/(tan^(2)x)

f((9)/(2))=(2)/(9), thenthevalueof lim_(x rarr0)f((1-cos3x)/(x^(2)))

Let f'(x) be continuous at x=0 and f'(0)=4 then value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

If f(x) is differentiable and strictly increasing function, then the value of lim_(x rarr 0) (f(x^(2))-f(x))/(f(x)-f(0))

If f(x) is differentiable and strictly increasing function,then the value of lim_(x rarr0)(f(x^(2))-f(x))/(f(x)-f(0)) is 1 (b) 0(c)-1 (d) 2

If the normal to the curve y=f(x) at x=0 be given by the equation 3x-y+3=0 , then the value of lim_(x rarr0)x^(2){f(x^(2))-5f(4x^(2))+4f(7x^(2))}^(-1) is (-1)/(k) then k =