Home
Class 11
MATHS
[" 13.In any triangle "ABC,sin^(2)A-sin^...

[" 13.In any triangle "ABC,sin^(2)A-sin^(2)B+sin^(2)C" is always equal to "],[" 1) "2sin A sin B cos Cquad " 2) "2sin A cos B sin Cquad " 3) "2sin A cos B cos Cquad " 4) "2sin A sin B sin C]

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC,sin^(2)A-sin^(2)B+sin^(2)C is always equal to (A) 2sin A sin B cos C(B)2sin A cos B sin C(C)2sin A cos B cos C(D)2sin A sin B sin C

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

sin ^ (2) A + sin ^ (2) B-sin ^ (2) C = 2sin A sin B cos C

In any triangle ABC,prove that sin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3sin A sin B sin C

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

In a triangle ABC, if cos A cos B+sin A sin B sin C=1, then a:b:c is equal to

Prove that in triangle ABC,cos^(2)A+cos^(2)B-cos^(2)C=1-2sin A sin B cos C

(2sin (AC) cos C-sin (A-2C)) / (2sin (BC) cos C-sin (B-2C)) = (sin A) / (sin B)