Home
Class 12
MATHS
[" Solve the simultaneous vector equatio...

[" Solve the simultaneous vector equations for the vectors "vec x" and "vec y" ."],[vec x+vec c+vec v=vec a" and "vec y+vec c timesvec x=vec b" where "vec c" is non zero vector."]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the simultaneous vector equation of vec x and vec y, vec x + vec c xxvec y = vec a, vec y + vec c xxvec x = vec b where vec c! = 0

Given the following simultaneous equation for vectors vec x and vec y , vec x+ vec y= vec a , vec x xx vec y= vec b , vec x . vec a=1 , then vec x= (A) ( vec a+( vec axx vec b))/( vec a^2) (B) ( vec a+( vec axx vec b))/(| vec a|) (C) (( vec a+( vec axx vec b)))/( vec b^2) (D) none of these

" For some non zero vector "vec x," if "vec x*vec a=vec x*vec b=vec x*vec c=0" then "[vec avec bvec c]=

For non-zero vectors vec a and vec b if |vec a+vec b|<|vec a-vec b|, then vec a and vec b are

If vec a is a non-zero vector and vec a * vec b = vec a * vec c, vec a xxvec b = vec a xxvec c, then

If for three non zero vectors vec a,vec b and vec cvec a*vec b=vec a.vec c and vec a xxvec b=vec a xxvec c, the show that vec b=vec c .

Solve the following equation for the vector vec p; vec p xx vec a+(vec p. vec b)vec c=vec b xx vec c where vec a ,vec b,vec c are non zero non coplanar vectors and vec a is neither perpendicular to vec b non to vec c hence show that (vec p xx vec a+([vec a vec b vec c])/(vec a*vec c) vec c) is perpendicular vec b-vec c.

The vectors vec a + vec b + vec c, 2 vec a+ vec b + 3 vec c and vec a + 2 vec b + 3 vec c , where vec a, vec b , and vec c are non coplanar vectors , are

What is the value of [vec a vec b vec c] if vec a, vec b, vec c are non-zero coplanar vectors ?

Vector vec x satisfying the relation vec A*vec x=c and vec B xxvec x=vec B is :