Home
Class 12
MATHS
Given that vec adot vec b= vec adot vec...

Given that ` vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec ca n d vec a` is not a zero vector. Show that ` vec b= vec cdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec c and vec a is not a zero vector. Show that vec b= vec c dot

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec c and vec a is not a zero vector. Show that vec b= vec c dot

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

If vec a , vec b , vec c are vectors such that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec c , vec a!= vec0, then show that vec b= vec c

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is vec bdot vec c= vec adot vec d b. vec adot vec b= vec cdot vec d c. vec bdot vec c+ vec adot vec d=0 d. vec adot vec b+ vec cdot vec d=0

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is vec bdot vec c= vec adot vec d b. vec adot vec b= vec c dot vec d c. vec bdot vec c+ vec adot vec d=0 d. vec adot vec b+ vec c dot vec d=0

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec adot vec b+ vec bdot vec c+ vec c dot vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c). vec adot vec b= vec bdot vec c= vec c dot vec a (d). vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is a. vec bdot vec c= vec adot vec d b. vec adot vec b= vec c dot vec d c. vec bdot vec c+ vec adot vec d=0 d. vec adot vec b+ vec c dot vec d=0