Home
Class 11
MATHS
[" c) "f(x)" is an onto function "],[" 1...

[" c) "f(x)" is an onto function "],[" 19.Let "f(x)+f(y)=f(x sqrt(1-y^(2))+y sqrt(1-x^(2)))[f(x)" is not identically zero].Then "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let k[f(x)+f(y)]=f(x sqrt(1-y^(2))+y sqrt(1-x^(2))) then k=:

Let f(x)+f(y)=f(x sqrt(1-y^(2))+y sqrt(1-x^(2)))[f(x) is not identically zerol.Then f(4x^(3)-3x)+3f(x)=0f(4x^(3)-3x)=3f(x)f(2x sqrt(1-x^(2))+2f(x)=0f(2x sqrt(1-x^(2))=2f(x)

Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zero]. Then a) f(4x^3-3x)+3f(x)=0 b) f(4x^3-3x)=3f(x) c) f(2xsqrt(1-x^2)+2f(x)=0 d) f(2xsqrt(1-x^2)=2f(x)

Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zero]. Then f(4x^3-3x)+3f(x)=0 f(4x^3-3x)=3f(x) f(2xsqrt(1-x^2)+2f(x)=0 f(2xsqrt(1-x^2)=2f(x)

Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zero]. Then f(4x^3-3x)+3f(x)=0 f(4x^3-3x)=3f(x) f(2xsqrt(1-x^2)+2f(x)=0 f(2xsqrt(1-x^2)=2f(x)

Which of the following functions have the graph symmetrical about the origin? f(x) given be f(x)+f(y)=f((x+y)/(1-xy))f(x) given by f(x)+f(y)=f(x sqrt(1-y^(2))+y sqrt(1-x^(2)))f(x) given by f(x+y)=f(x)+f(y)AA x,y in R none of these

Let f(x) be a function such that f(x)*f(y)=f(x+y),f(0)=1,f(1)=4. If 2g(x)=f(x)*(1-g(x))

Let f(x) be a function such that f(x).f(y)=f(x+y) , f(0)=1 , f(1)=4 . If 2g(x)=f(x).(1-g(x))

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.