Home
Class 11
MATHS
" (b) "(z-1)/(z-2)+(z-3)/(z-4)=(10)/(3)...

" (b) "(z-1)/(z-2)+(z-3)/(z-4)=(10)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

(a)/(|z_(1)-z_(2)|)=(b)/(|z_(2)-z_(3)|)=(c)/(|z_(3)-z_(1)|)(a,b,c in R) then (a^(2))/(|z_(1)-z_(2)|)=(b^(2))/(|z_(2)-z_(3)|)=(c^(2))/(|z_(3)-z_(1)|) is

P(z_1),Q(z_2),R(z_3)a n dS(z_4) are four complex numbers representing the vertices of a rhombus taken in order on the complex lane, then which one of the following is/ are correct? (z_1-z_4)/(z_2-z_3) is purely real a m p(z_1-z_4)/(z_2-z_3)=a m p(z_2-z_4)/(z_3-z_4) (z_1-z_3)/(z_2-z_4) is purely imaginary It is not necessary that |z_1-z_3|!=|z_2-z_4|

P(z_1),Q(z_2),R(z_3)a n dS(z_4) are four complex numbers representing the vertices of a rhombus taken in order on the complex lane, then which one of the following is/ are correct? (z_1-z_4)/(z_2-z_3) is purely real a m p(z_1-z_4)/(z_2-z_3)=a m p(z_2-z_4)/(z_3-z_4) (z_1-z_3)/(z_2-z_4) is purely imaginary It is not necessary that |z_1-z_3|!=|z_2-z_4|

Let z_1, z_2, z_3 be the three nonzero complex numbers such that z_2!=1,a=|z_1|,b=|z_2|a n d c=|z_3|dot Let |a b c b c a c a b|=0 a r g(z_3)/(z_2)=a r g((z_3-z_1)/(z_2-z_1))^2 orthocentre of triangle formed by z_1, z_2, z_3, i sz_1+z_2+z_3 if triangle formed by z_1, z_2, z_3 is equilateral, then its area is (3sqrt(3))/2|z_1|^2 if triangle formed by z_1, z_2, z_3 is equilateral, then z_1+z_2+z_3=0

The point z_(1),z_(2),z_(3),z_(4) in the complex plane are the vertices of a parallogram taken in order, if and only if. (1) z _(1) +z_(4)=z_(2)+z_(3) (2) z_(1)+z_(3) =z_(2) +z_(4) (3) z_(1)+z_(2) =z_(3)+z_(4) (4) z_(1) + z_(3) ne z_(2) +z_(4)

If z_(1) = 3, z_(2) = -7i, and z_(3) = 5 + 4i, show that (z_(1) + z_(2)) z_(3) = z_(1) z_(3) + z_(2) z_(3)

If z_(1) = 3, z_(2) = -7i, and z_(3) = 5 + 4i, show that z_(1)(z_(2) + z_(3)) = z_(1) z_(2) + z_(1) z_(3)

Let four points z_(1),z_(2),z_(3),z_(4) be in complex plane such that |z_(2)|= 1, |z_(1)|leq 1 and |z_(3)| le 1 . If z_(3) = (z_(2)(z_(1)-z_(4)))/(barz_(1)z_(4)-1) , then |z_(4)| can be

If z_(1) = 1 - 3i, z_(2) = -4i and z_(3) = 5, show that (z_(1)z_(2)) z_(3) = z_(1) (z_(2)z_(3))

Z_(1), Z_(2),......,Z_(6) are non-zero complex number such that (Z_(1))/(Z_(2))+(Z_(3))/(Z_(4))+(Z_(5))/(Z_(6))=a+bi, where a,b real and (Z_(2))/(Z_(1))+(Z_(4))/(Z_(3))+(Z_(6))/(Z_(5))=0 then ((Z_(2))/(Z_(2)))^(2)+((Z_(3))/(Z_(4)))^(2)+((Z_(5))/(Z_(6)))^(2) =