Home
Class 12
MATHS
" 2."y^(2)=a(b^(2)-x^(2))...

" 2."y^(2)=a(b^(2)-x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the diffrential equations : (dy)/(dx)+sqrt((a^(2)-y^(2))/(b^(2)-x^(2)))=0

If e and e' are the eccentricities of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2)) =1 and (y^(2))/(b^(2))-(x^(2))/(a^(2))=1 , then the point ((1)/(e),(1)/(e')) lies on the circle:

A tangent at a point on the circle x^(2)+y^(2)=a^(2) intersects a concentric circle C at two points P and Q. The tangents to the circle X at P and Q meet at a point on the circle x^(2)+y^(2)=b^(2). Then the equation of the circle is x^(2)+y^(2)=abx^(2)+y^(2)=(a-b)^(2)x^(2)+y^(2)=(a+b)^(2)x^(2)+y^(2)=a^(2)+b^(2)

if the square of the length of the tangents from point P to the circleS x^(2)+y^(2)=a^(2), x^(2)+y^(2)=b^(2), x^(2)+y^(2)=c^(2) are in A.P. Then a^(2), b^(2), c^(2) are is

If the square of the length of the tangents from a point P to the circles x^(2)+y^(2)=a^(2), x^(2)+y^(2)=b^(2), x^(2)+y^(2)=c^(2) are in A.P. then a^(2),b^(2),c^(2) are in

If the square of the length of the tangents from a point P to the circles x^(2)+y^(2)=a^(2), x^(2)+y^(2)=b^(2), x^(2)+y^(2)=c^(2) are in A.P. then a^(2),b^(2),c^(2) are in

Prove that the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(x^(2))/(a^(12))+(y^(2))/(b^(2))=1 intersect orthogonally if a^(2)-a^(2)=b^(2)-b^(2)

Slope of the common tangent to the ellipse (x^(2))/(a^(2)+b^(2))+(y^(2))/(b^(2))=1,(x^(2))/(a^(2))+(y^(2))/(a^(2)+b^(2))=1 is

if two curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1&(x^(2))/(a)^(2)+(y^(2))/(b)^(2)=1 one another at right angle then