Home
Class 11
MATHS
(d)/(dx)[(x+1)(x^(2)+1)(x^(4)+1)(x^(8)+1...

(d)/(dx)[(x+1)(x^(2)+1)(x^(4)+1)(x^(8)+1)]=(15x^(p)-16x^(q)+1)(x-1)^(-2)rArr(p,q)=

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx) [(x +1)(x^2+1)(x ^(4) + 1) (x ^(8) +1)]=(15 x ^(p) -16x^q+1) (x-1) ^(-2) implies (p,q)=

(d)/(dx){(x^(2)-x+1)/(x^(2)+x+1)}=

(d)/(dx)[tan^(-1)((4x-4x^(3))/(1-6x^(2)+x^(4)))]=

(d)/(dx)[sin^(-1)((2^(x+1))/(1+4^(x)))]

(d)/(dx) {Cos ^(-1) ""(1-x ^(2))/(1+ x ^(2))}=

(d)/(dx) {sin ^(2) ((1- x ^(2))/(1 + x ^(2)))}=

d/(dx)(cos^-1((1-x^2)/(1+x^2)))=

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=