Home
Class 12
MATHS
Prove : underset(nrarroo)"lim"[root(3)(n...

Prove : `underset(nrarroo)"lim"[root(3)(n+1)-root(3)(n)]=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove : underset(nrarroo)"lim"(sqrt(n+1)-sqrt(n))=0

Evaluate : underset(xrarr0)"lim"(root(3)(1+x)-root(3)(1-x))/(x)

Prove that underset(hrarr0)"lim"(root3(x+h)-root3(x))/(h)=(1)/(3)x^(-2/3)

show : underset(xrarra)"lim"(root(3)(x)-root(3)(a))/(x-a)=(1)/(3)a^(-2/3)

Evaluate : underset(nrarroo)"lim"(1+sqrt(n))/(1-sqrt(n))

Compute the limit A = underset(n rarr oo)("lim") (root(n)(n!))/(n)

show : underset(hrarr0)"lim"(root(3)(h+1)-1)/(h)=(1)/(3)

Prove that underset(nrarroo)"lim"(1^(3)+2^(3)+3^(3)+...+n^(3))/(n^(4))=(1)/(4)

Evaluate : underset(nrarroo)"lim"(2n^(2)+3n-9)/(3n^(3)+2n+7)

Evaluate : underset(nrarroo)"lim"(sqrt(1+n^(2))-sqrt(1+n))/(sqrt(1+n^(3))-sqrt(1+n))