Home
Class 12
MATHS
" If "I(n)=int(0)^(1)(1-x^(3))^(n)dx;(n ...

" If "I_(n)=int_(0)^(1)(1-x^(3))^(n)dx;(n in N)," then "(l_(n))/(l_(n-1))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

U_(n)=int_(0)^(1)x^(n)(2-x)^(n)dx and V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dx,n in N and if (V_(n))/(U_(n))=1024, then the value of n is

If I_(n)=int_(0)^(1)(dx)/((1+x^(2))^(n));n in N, then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_(n)

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is