Home
Class 11
MATHS
Solve: 4^(log2 x)-2x-3=0...

Solve: `4^(log_2 x)-2x-3=0`

Text Solution

Verified by Experts

`4^(log_2x) - 2x- 3 = 0`
`=>2^(2(log_2x)) - 2x - 3 = 0`
`=>2^(log_2x^2) -2x -3 = 0`
`=>x^2-2x-3 = 0` (As `a^(log_ab) = b`)
`=>x^2 - 3x+x-3 = 0`
`=>x(x-3)+1(x-3) = 0`
`=>(x-3)(x+1) = 0`
`x=3 and x =-1`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equations : (i) log_(x)(4x-3)=2 (ii) log_2(x-1)+log_(2)(x-3)=3 (iii) log_(2)(log_(8)(x^(2)-1))=0 (iv) 4^(log_(2)x)-2x-3=0

Solve the following equations : (i) log_(x)(4x-3)=2 (ii) log_2)(x-1)+log_(2)(x-3)=3 (iii) log_(2)(log_(8)(x^(2)-1))=0 (iv) 4^(log_(2)x)-2x-3=0

Solve : log_4(log_3(log_2x))=0

Solve log_(x)(2x-(3)/(4))<2

Solve : 6(log_x2-(log_4x)+7=0.

Solve log_(0.2)|x-3|>=0

Solve x^[[3/4(log_2 x)^2+log_2 x-5/4]] = sqrt2

Solve : log_2 (4-x) = 4 - log_2 (-2-x)

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot

Solve: 4(log)_(x/2)(sqrt(x))+2(log)_(4x)(x^2)=3(log)_(2x)(x^3)dot