Home
Class 12
MATHS
If lines (x-3)/1=(y-[K])/2=(z-1)/1 and (...

If lines `(x-3)/1=(y-[K])/2=(z-1)/1` and `(x-1)/2=(y+1)/3=(z-1)/4` intersect, (where [.] denotes greatest integer function) then `K` can be 4 (2) `(13)/4` (3) 5 (4) `(37)/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

If lines (x-3)/(1)=(y-[k])/(2)=(z-1)/(1) and (x-1)/(2)=(y+1)/(3)=(z-1)/(4) intersect (where [.] denotes greatest integer function) then k can be (1)5 (2) (13)/(4) (3) (19)/(4) (4) (15)/(4)

Lines (x-1)/2=(y+1)/3 =(z-1)/4 and (x-3)/1=(y-k)/1=z/1 intersects , then k equals :

The lines (x-2)/1=(y-3)/1=(z-4)/-k and (x-1)/k=(y-4)/2=(z-5)/1 are coplaner if

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then

If the lines (x-1)/2=(y+1)/3=(z-1)/4 and (x-3)/1=(y-k)/2=z/1 intersect, then find the value of k .

If the line (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect, then k is equal to

If the lines : (x-1)/2 =(y+1)/3 =(z-1)/4 and (x-3)/1=(y-k)/2 =z/1 intersect , then k is equal to :