Home
Class 12
MATHS
[" If "x^(2)+y^(2)+z^(2)!=0,x=cy+bz,y=az...

[" If "x^(2)+y^(2)+z^(2)!=0,x=cy+bz,y=az+cxan],[z=bx+ay" then "a^(2)+b^(2)+c^(2)+2abc=],[" (Eamcet-200: "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x@+y^(2)+z^(2)!=0,x=cy+bz,y=az+cx, and z=bx+ay, then a^(2)+b^(2)+c^(2)+2abc=

If x^2+y^2+z^2 ne0, x=cy+bz,y=az+cxandz=bx+ay" then "a^2+b^2+c^2+2abc=

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

If x ^(2) + y ^(2) + z ^(2)ne 0, x= cy + bz, y= az +cx, and z= bx + ay, a ^(2) + b ^(2) + c ^(2) + 2 abc is equal to

If x=cy+bz,y=cx+az,z=bx+ay the value of a^(2)+b^(2)+c^(2)-1 is (A)abc(B) abc (C)2abc(D)-2abc

If x,y and z are eliminated from the equations x=cy+bz, y=az+cx" and z=bx+ay, then a^(2)+b^(2)+c^(2)+2abc=

If x = cy + bz, y = az + cx , z =bx + ay, then prove that x^2/(1-a^2)= y^2/(1-b^2)