Home
Class 12
MATHS
int(-1)^(1)log(x+sqrt(x^(2)+1))dx=cdots...

int_(-1)^(1)log(x+sqrt(x^(2)+1))dx=cdots

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

int_(-1)^(1)log(x+sqrt(x^(2)+1)) dx is equal to

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

Evaluation of definite integrals by subsitiution and properties of its : int_(-1)^(1)log[x+sqrt(x^(2)+1)]dx=.........

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

int_(-a)^(a) log (x+ sqrt(x^(2) + 1 ) ) dx

int log (x+sqrt(x^(2)-1))dx=

The value of int_(-1)^(1) ((logx+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x sqrt(1+x^(2))))/(x+log(x+logsqrt(1+x^(2))))f(-x)dx ,