Home
Class 12
PHYSICS
The exhaust velocity of gases with respe...

The exhaust velocity of gases with respect to a small rocket of mass 25 kg. is `28xx10^(2)m//s`. At what rate the fuel must burn so that it may rise up with an acceleration of `9.8 m//s^(2)`?

Promotional Banner

Similar Questions

Explore conceptually related problems

For a Rocket propulsion velocity of exhaust gases relative to rocket is 2km/s. If mass of rocket system is 1000 kg, then the rate of fuel consumption for a rockt to rise up with acceleration 4.9 m//s^(2) will be:-

For a Rocket propulsion velocity of exhaust gases relative to rocket is 2km/s. If mass of rocket system is 1000 kg, then the rate of fuel consumption for a rockt to rise up with acceleration 4.9 m//s^(2) will be:-

For a Rocket propulsion velocity of exhaust gases relative to rocket is 2km/s. If mass of rocket system is 1000 kg, then the rate of fuel consumption for a rockt to rise up with acceleration 4.9 m//s^(2) will be:-

The mass of a rocket is 500 kg and the relative velocity of the gases ejecting from it is 250 m/s with respect to the rocket. The rate of burning of the fuel in order to give the rocket an initial acceleration 20 m//s^(2) in the vertically upward direction g = 10 m/s^(2) , will be -

A rocket of mass 1000 kg is to be projected vertically upwards. The gases are exhausted vertically downwards with velocity 100m//s with respect to the rocket. (What is the minimum rate of burning fuel, so as to just lift the rocket upwards against the gravitational attraction?) (Take g=10m//s^(2) )

A rocket of mass 1000 kg is to be projected vertically upwards. The gases are exhausted vertically downwards with velocity 100m//s with respect to the rocket. (What is the minimum rate of burning fuel, so as to just lift the rocket upwards against the gravitational attraction?) (Take g=10m//s^(2) )

A rocket of mass 1000 kg is to be projected vertically upwards. The gases are exhausted vertically downwards with velocity 100m//s with respect to the rocket. (What is the minimum rate of burning fuel, so as to just lift the rocket upwards against the gravitational attraction?) (Take g=10m//s^(2) )

A rocket of mass 40kg has 160kg fuel. The exhaust velocity of the fuel is 2.0km//s . The rate of consumption of fuel is 4kg//s . Calculate the ultimate vertical speed gained by the rocket. (g=10m//s^2)