Home
Class 11
MATHS
Let f''(x) be continuous at x = 0 and f"...

Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of `lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f''(0)=k,kne0 , then the value of lim_(xto0)(2f(x)-3f(2x)+f(4x))/(x^2) is

If f''(0)=k,kne0 then the value of lim_(xrarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

If f'(x)=k,k!=0, then the value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

If f(x) is continuous at x=0 and f(0)=2, then lim_(x to 0) int_(0)^(x)f(u)du)to is

Let f''(x) be continuous at x=0 If lim_(x rarr0)(2f(x)-3a(f(2x)+bf(8x))/(sin^(2)x) exists and f(0)!=0,f'(0)!=0, then the value of (3a)/(b) is

Let f ''(x) be continuous at x=0 If ("lim")_(xvec0)(2f(x)-3a(f(2x)+bf(8x))/(sin^2x) exists and f(0)!=0,f^(prime)(0)!=0, then the value of (3a)/b is____