Home
Class 12
MATHS
Verify that arg(1 + i) + arg (1 -i) = ...

Verify that
arg(1 + i) + arg (1 -i) = arg [ (1+i)(1-i)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify that 2 arg (-1) ne arg (-1)^(2)

If z, z_1 and z_2 are complex numbers, prove that (i) arg (barz) = - argz (ii) arg (z_1 z_2) = arg (z_1) + arg (z_2)

If z=(-1-i) , then arg z =

Let z be a complex number and i=sqrt(-1) then the number of common points which satisfy arg(z-1-i)=(pi)/(6) and arg((z-1-i)/(z+1-i))=(pi)/(2) is

If arg (bar (z) _ (1)) = arg (z_ (2)) then

Sketch the region given by (i) Arg (z-1-i)>=(pi)/(3)

Interpet the following equations geometrically on the Argand plane. arg(z+i)-arg(z-i)=(pi)/(2)

If |z|=1 and z ne +- 1 , then one of the possible values of arg(z)- arg (z+1)- arg (z-1) , is