Home
Class 11
MATHS
If omega is an imaginary cube root of un...

If `omega` is an imaginary cube root of unity, then the value of `|(a,b omega^(2),a omega),(b omega,c,b omega^(2)),(c omega^(2),a omega,c)|`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is an imaginary cube root of unity, then the value of (1+ omega- omega^(2))(1- omega + omega ^(2)) is-

If omega is an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^(2),-omega),(1+omega^(2),omega,-omega^(2)),(omega+omega^(2),omega,-omega^(2))| is

If omega is an imaginary cube root of unity, then the value of (1)/(1+2omega)+(1)/(2+omega)-(1)/(1+omega) is :

If omega is an imaginary cube root of unity then the value of [[1+omega , omega^2 , -omega],[1+omega^2 , omega , -omega^2 ],[omega^2+omega , omega , -omega^2 ]] =

If omega is an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

If omegais an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

If omega is a non-ral cube root of unity then the value of (a+b) (a+b omega) (a+b omega ^(2)) is-