Home
Class 11
MATHS
If a, b, c, d, e are in continued propor...

If a, b, c, d, e are in continued proportion, then prove that `(ab+bc+cd+de)^2=(a^2+b^2+c^2+d^2)(b^2+c^2+d^2+e^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c, d are in continued proportion, then prove that (b -c)^(2) + (c -a)^(2) + (b-d)^(2) = (a -d)^(2)

If a,b,c,d are in continued proportion,prove that: a:b+d=c^(3):c^(2)d+d^(3).

If a,b,c,d are in continued proportion then show that (b-c)^2+(c-a)^2+(b-d)^2= (a-d)^2 .

If a,b,c re in continued proportion then show that a/c=(a^2+ab+b^2)/(b^2+bc+c^2)

If a,b,c,d are in proportion, then prove that (a^2+ab+b^2)/(a^2-ab+b^2)=(c^2+cd+d^2)/(c^2-cd+d^2)

If a,b,c,d are in proportion, then prove that sqrt((a^2+5c^2)/(b^2+5d^2))=a/b

If a,b,c,d are in proportion then prove that sqrt((a^2+5c^2)/(b^2+5d^2))=a/b

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)

If a, b, c and d are in proportion, then show that (a^(3)+3ab^(2))/(3a^(2)b+b^(3))=(c^(3)+3cd^(2))/(3c^(2)d+d^(3))