Home
Class 14
MATHS
The expression ((x+1/y)^a*(x-1/y)^b)/((y...

The expression `((x+1/y)^a*(x-1/y)^b)/((y+1/x)^a*(y-1/x)^b)` reduces to a. `(x/y)^(a-b)` b. `(y/x)^(a-b)\ ` c. `(x/y)^(a+b)` d. `(y/x)^(a+b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression ((x+(1)/(y))^(a)*(x-(1)/(y))^(b))/((y+(1)/(x))^(a)*(y-(1)/(x))^(b)) reduces to a.((x)/(y))^(a-b) b.((y)/(x))^(a-b)backslash c((x)/(y))^(a+b)d.((y)/(x))^(a+b)

Solve the following : [(x + 1/y)^a (x - 1/y)^b] div [(y + 1/x)^a (y - 1/x)^b] is equal to

Solve the followings : [(x + 1/y)^a (x - 1/y)^b] div [(y + 1/x)^a (y - 1/x)^b] is equal to :

Simplify : : ( ( x+(1)/(y)) ^(a) ( x-(1)/(y))^(b))/((y+(1)/(x))^(a) (y-(1)/(x))^(b))

The expression (x+y)/(x-y)-:((x+y)^(2))/((x^(2)-y^(2))) is equal to -1( b) x-y( c) 1 (d) x+y is equal

If (y/z)^a (z/x)^b (x/y)^c=1 , then prove that (y/z)^((1)/(b-c))=(z/x)^((1)/(c-a))=(x/y)^((1)/(a-b)) .

If x^(y)=y^(x), then ((x)/(y))^(x/y) is equal to a.x^(y/x) b.x^((x)/(y)-1) c.1d.x^((x)/(y))

(((1)/(x)+y)^((a+b))((1)/(y)-x)^(-(p+q)))/(((1)/(x)-y)^(-(p+q))(x+(1)/(y))^((a+b)))=