Home
Class 12
MATHS
Let A=[(0, i),(i, 0)], where i^(2)=-1. L...

Let `A=[(0, i),(i, 0)]`, where `i^(2)=-1`. Let I denotes the identity matrix of order 2, then `I+A+A^(2)+A^(3)+……..A^(110)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A denote the matrix ({:(0,i),(i,0):}) , where i^(2) = -1 , and let I denote the identity matrix ({:(1,0),(0,1):}) . Then I + A + A^(2) + "….." + A^(2010) is -

Let A be a square matrix of order 3 xx 3 , then I 2A I is equal to :

Let A=[(0,1),(0,0)] , show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA , where I is the identity matrix of order 2 and n in N .

Let A=[(0,1),(0,0)] , show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA , where I is the identity matrix of order 2 and n in N .

Let A=[(0,1),(0,0)] , show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA , where I is the identity matrix of order 2 and n in N .

Let A = [(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity matrix . Then 2A^(2) -A^(3) =

Let A=[(0,1),(0,0) ] show that (a I+b A)^n=a^n I+n a^(n-1)b A , where I is the identity matrix of order 2 and n in N .

Let A be a non - singular symmetric matrix of order 3. If A^(T)=A^(2)-I , then (A-I)^(-1) is equal to

Let A be a non - singular symmetric matrix of order 3. If A^(T)=A^(2)-I , then (A-I)^(-1) is equal to

Let A=[[0,10,0]] show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA where I is the identity matrix of order 2 and n in N