Home
Class 12
MATHS
यदि y=log(logx) हो, तो (d^(2)y)/(dx^(2))...

यदि `y=log(logx)` हो, तो `(d^(2)y)/(dx^(2))` ज्ञात कीजिए |

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

If y=log(sin x), find (d^(2)y)/(dx^(2))

If y=log(secx) , then (d^(2)y)/(dx^(2)) is :

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y=|(log)_(e)x|, find (d^(2)y)/(dx^(2))

If y= x^(3)log x,then ( d^(2)y)/(dx^(2)) =

If y = log(sin x) , find (d^2y)/(dx^2)

If y=x^(n)log nx.,then (d^(2)y)/(dx^(2))=

If y=x log x ,then (d^(2)y)/(dx^(2))=