Home
Class 12
MATHS
If y=(x^(2)+2x+1)/(x^(2)+2x+7), then inv...

If `y=(x^(2)+2x+1)/(x^(2)+2x+7)`, then inverse function x is difined only when

Promotional Banner

Similar Questions

Explore conceptually related problems

Inverse of the function y =2x -3 is

Inverse of the function y =2x -3 is

f(x) = (8^(2x) - 8^(-2x))/(8^(2x) + 8^(-2x) find the inverse of the function

f(x) = (8^(2x) - 8^(-2x))/(8^(2x) + 8^(-2x) find the inverse of the function

If f(x)=x^(2)-x+5, x gt (1)/(2) and g(x) is its inverse function, then g'(7) equals

If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

If int(dx)/(x^(2)+ax+1)=f(x(x))+c, then f(x) is inverse trigonometric function for |a|>2f(x) is logarithmic function for |a| 2g(x) is rational function for |a|<2