Home
Class 12
MATHS
f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] wh...

`f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)]` where [.] greatest integer function then

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function,is

Domain (D) and range (R ) of f(x)=sin^(-1)(cos^(-1)[x]) where [ ] denotes the greatest integer function is

If [sin^(-1)(cos^(-1)(sin^(-1)(tan^(-1)x)))]=1 where [*] denotes the greatest integer function,then x in

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is