Home
Class 12
PHYSICS
Potential energy of a particle of mass m...

Potential energy of a particle of mass `m`, depends on distance `y` from line `AB` according to given relation `U = (K)/(sqrt(y^(2) + a^(2))`, where `K` is a positive constant. A particle of mass `m` is projected from `y = sqrt(3)` towards line `AB`. (perpendicular to it) then minimum velocity so that it connot return to its initial point is `sqrt((K)/(aNm))`, calculate `N`.

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle of mass m is present in a region where the potential energy of the particle depends on the x-coordinate according to the expression U=(a)/(x^2)-(b)/(x) , where a and b are positive constant. The particle will perform.

A particle of mass m is present in a region where the potential energy of the particle depends on the x-coordinate according to the expression U=(a)/(x^2)-(b)/(x) , where a and b are positive constant. The particle will perform.

The potential energy of a particle of mass 1 kg in a conservative field is given as U=(3x^(2)y^(2)+6x) J, where x and y are measured in meter. Initially particle is at (1,1) & at rest then:

The velocity of the particle of mass m as a function of time t is given by v = Aomega.cos[sqrt(K/m)t] , where A is amplitude of oscillation. The dimension of A/K is

The velocity of the particle of mass m as a function of time t is given by v = Aomega.cos[sqrt(K/m)t] , where A is amplitude of oscillation. The dimension of A/K is

The potential energy of a particle of mass 2 kg moving in a plane is given by U = (-6x -8y)J . The position coordinates x and y are measured in meter. If the particle is initially at rest at position (6, 4)m, then