Home
Class 12
MATHS
x=(1+logt)/(t^(2)), y=(3+2logt)/(t)...

`x=(1+logt)/(t^(2)), y=(3+2logt)/(t)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a((1+t^2)/(1-t^2)),y=(2t)/(1-t^2) find dy/dx at t=1/sqrt3 .

If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t) then x((dy)/(dx))^(3)-(dy)/(dx), equals to

Find (dy)/(dx) if x=(3a t)/(1+t^3) ; y=(3a t^2)/(1+t^3)

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is

intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)dx "is" =-(1)/(6)[(2)/(3)t^(3//2)logt-(4)/(3)t^(3//2)]+C where t=

intsqrt(x^6+1).(log(x^6+1)-6logx)/(x^10)dx "is" =-(1)/(6)[(2)/(3)t^(3//2)logt-(4)/(3)t^(3//2)]+C where t=

If int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/(e^(2x)-1))dx=(t^(2))/(2)logt-(t^(2))/(4)-(u^(2))/(2)logu+(u^(2))/(4)+C, then