Home
Class 12
MATHS
In the mean value theorem, f(x+h)=f(x)+...

In the mean value theorem, `f(x+h)=f(x)+hf'(x+theta h)(0 lt theta lt 1),` if `f(x)=e^(x)`, then show that the value of `theta` is independent of x.

Promotional Banner

Similar Questions

Explore conceptually related problems

In the mean value theorem f(a+h)=f(a)+hf'(a+theta h) ( 0 lt theta lt 1) , if f(x)=sqrt(x), a=1, h=3 , then the value of theta is -

In the mean value theorem, f(a+h)=f(a)+hf'(a+theta h) (0 lt theta lt 1), find theta when f(x)=sqrt(x), a=1 and h=3.

In the mean value theorem f(b)-f(a)=(b-a)f'(c )(a lt c lt b) , if a=4, b=9 and f(x)=sqrt(x) , then the value of c is -

In the following Lagrange's mean value theorem, f(a+h)-f(a)=hf'(a+theta h), 0 lt theta lt 1 If f(x)=(1)/(3) x^(3)-(3)/(2) x^(2)+2x, a=0 and h=3 " find " theta .

Compute the value of theta the first mean value theorem f(x+h) =f(x) + hf'(x+theta h) if f(x) = ax^(2) + bx + c

From mean value theorem, f(b)-f(a) = (b-a)f^(1)(x_(1)), a lt x_(1) lt b if f(x) = ( 1)/( x) then x_(1) =

In the mean value theorem f(b)-f(a)=(b-a)f'(c ), (a lt c lt b)," if " f(x)=x^(3)-3x-1 and a=-(11)/(7), b=(13)/(7) , find the value of c.

If f(x)=(1-x^(2))/(1+x^(2)) then show that f(tan theta)=cos2 theta

From mean value theoren : f(b)-f(a)=(b-a)f^(prime)(x_1); a lt x_1 lt b if f(x)=1/x , then x_1 is equal to

From mean value theoren : f(b)-f(a)=(b-a)f^(prime)(x_1); a lt x_1 lt b if f(x)=1/x , then x_1 is equal to