Home
Class 12
MATHS
If x=t^2 and y=t^3 , find (d^2y)/(dx^2) ...

If `x=t^2` and `y=t^3` , find `(d^2y)/(dx^2)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2) and y=t^(3), find (d^(2)y)/(dx^(2))

If x = g(t) and y = f(t) , find (d^2y)/(dx^2) as a function of t.

If x=t^(2),quad y=t^(3), then (d^(2)y)/(dx^(2))=3/2(b)3/4t(c)3/2t(d)3t/2

If x=t^2, y = t^3, then (d^2y)/(dx^2) is

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to