Home
Class 12
MATHS
sum(n=1)^(13) (i^(n) + i^(n+1)) का मान (...

`sum_(n=1)^(13) (i^(n) + i^(n+1))` का मान (जहाँ, `i = sqrt(-1))` क्या हैं?

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

The value of sum_(n= 1)^(13) (i^(n) + i^(n + 1)) , where i=sqrt(-1) is

Q.sum_(n=1)^(13)(i^(n)+i^(n+1))=(-1+i),n in N

sum_(j=1)^(n)sum_(i=1)^(n)i=

What is the value of the sum sum_(n=2)^(11) (i^(n)+i^(n+1)), where i=sqrt(-1)?

Show that sum_(n=1)^(25) (i^(n) + i^(n +1)) = i-1