Home
Class 12
MATHS
If for the matrix A, A^(3)=I, then A^(-1...

If for the matrix A, `A^(3)=I`, then `A^(-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If for the matrix A, A^(5)=I , then A^(-1)=

If for matrix A, A^(3)=I then A^(-1)=

For the matrix A, if A^(3)=I , then find A^(-1) .

If for a matrix A , A^5=I , then A^-1=

A is a square matrix such that A^(3)=I , then A^(-1) is equal to -

If for a matrix A, A= A^(-1) , then show that A(A^(3)+I)=A+I (I is the unit matrix).

If the matrix A=[(1,2),(3,4)] then I+A+A^(2)+ ………… up to infinitey

If A is a square matrix such that A^(2)= I , then (A-I)^(3)+(A+I)^(3)-7A is equal to

If A is a square matrix such that A^(2)= I , then (A-I)^(3)+(A+I)^(3)-7A is equal to

If A is a square matrix such that A^(2)= I , then (A-I)^(3)+(A+I)^(3)-7A is equal to