Home
Class 11
MATHS
In a triangle ABC, sin^(2)A + sin^(2)B +...

In a triangle ABC, `sin^(2)A + sin^(2)B + sin^(2)C = 2`, then the triangle is

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

If sin^(2)B+ sin^(2)C = sin^(2)A , then the triangle ABC is-

In Delta ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

In any triangle ABC, if sin^(2)A + sin^(2)B + sin^(2)C = 9/4 , show that the triangle is equilateral.

If in a triangle ABC, sin^2A+sin^2B+sin^2C=2 then the triangle is always

In Delta ABC , if sin ^(2)A +sin ^(2) B +sin ^(2) C =(3)/(4) , then the triangles is

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

In a triangle ABC sin (A/2) sin (B/2) sin (C/2) = 1/8 prove that the triangle is equilateral

In Delta ABC, if sin^2 A+sin^2 B+sin^2 C =9//4 , then the triangle is