Home
Class 12
MATHS
A tangent is drawn to the parabola y^(2)...

A tangent is drawn to the parabola `y^(2)=8x` at P(2, 4) to intersect the x-axis at Q, from which another tangent is drawn to the parabola to touch it at R. If the normal at R intersects the parabola again at S, then the coordinates of S are

Promotional Banner

Similar Questions

Explore conceptually related problems

The normal to the parabola y^(2)=4x at P (1, 2) meets the parabola again in Q, then coordinates of Q are

The normal to the parabola y^(2)=4x at P (1, 2) meets the parabola again in Q, then coordinates of Q are

If a normal to the parabola y^(2)=8x at (2, 4) is drawn then the point at which this normal meets the parabola again is

A tangent is drawn to the parabola y^(2)=4ax at P such that it cuts the y-axis at Q. A line perpendicular to this tangents is drawn through Q which cuts the axis of the parabola at R. If the rectangle PQRS is completed, then find the locus of S.

A tangent is drawn to the parabola y^2=4a x at P such that it cuts the y-axis at Qdot A line perpendicular to this tangents is drawn through Q which cuts the axis of the parabola at R . If the rectangle P Q R S is completed, then find the locus of Sdot .

A tangent is drawn to the parabola y^2=4a x at P such that it cuts the y-axis at Qdot A line perpendicular to this tangents is drawn through Q which cuts the axis of the parabola at R . If the rectangle P Q R S is completed, then find the locus of Sdot

A tangent is drawn to the parabola y^2=4a x at P such that it cuts the y-axis at Qdot A line perpendicular to this tangents is drawn through Q which cuts the axis of the parabola at R . If the rectangle P Q R S is completed, then find the locus of Sdot .

Statement-1: Point of intersection of the tangents drawn to the parabola x^(2)=4y at (4,4) and (-4,4) lies on the y-axis. Statement-2: Tangents drawn at the extremities of the latus rectum of the parabola x^(2)=4y intersect on the axis of the parabola.