Home
Class 12
MATHS
[" 68.The value of "lim(x rarr0)((4^(x)-...

[" 68.The value of "lim_(x rarr0)((4^(x)-1)^(3))/(sin(x^(2))/(4)log(1+3x))" ,is "],[[1](4)/(3)(ln4)^(2),2](4)/(3)(ln4)^(3),3](3)/(2)(ln4)^(2),4](3)/(2)(ln4)^(3)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr 0) ((4^(x)-1)^(3))/(sin(x^(2)/4) log (1+3x)) is

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is

lim_(x rarr0)((log(1+x^(3)))/(sin^(3)x)

The value of lim_(x rarr0)((4^(x)-1)^(3))/(sin backslash(x)/(4)*log(1+(x^(2))/(3))) equals

The value of lim_(x rarr0)(sin3x^(2))/(ln(cos(2x^(2)-x))) is

lim_(x rarr0)(e^(3x)-1)/(log(1+5x))

lim_(x rarr0)(log(1-(x)/(2)))/(x)

lim_(x rarr0)((4^(x)-1)^(3))/(sin((x)/(p))ln(1+(x^(2))/(3))) is equal to

If lim_(x rarr0)(log(3+x)-log(3-x))/(x)=