Home
Class 12
MATHS
If x=(t-e^(-t^(2)))/(2t^(2)), prove tha...

If `x=(t-e^(-t^(2)))/(2t^(2))`, prove that, `t(dx)/(dt)+2x=(1)/(2t)+e^(-t^(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), prove that (dy)/(dx)+(x)/(y)=0

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .

If x=(2t)/(1+t^2),y=(1-t^2)/(1+t^2),t h e nfin d(dy)/(dx)a tt=2.