Home
Class 12
MATHS
" If "y=log(1+cos x)," prove that "(d^(3...

" If "y=log(1+cos x)," prove that "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))*(dy)/(dx)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log(1+cosx) , prove that (d^3y)/(dx^3)+(d^2y)/(dx^2)dot(dy)/(dx)=0 .

If y=log(1+sinx)," then "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=

If y="log"(1+cosx),"p r o v et h a t"(d^3y)/(dx^3)+(d^2y)/(dx^2)dot(dy)/(dx)=0.

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=(cos^(-1)x)^(2) prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-2=0

If y= cot x, prove that (d^(2)y)/(dx^(2)) + 2y (dy)/(dx)= 0.

If y=log[x+sqrt(x^(2)+1)], prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=A cos(log x)+B sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0