Home
Class 12
MATHS
[" If "x=cos t,y=e^(mt)" show that "],[(...

[" If "x=cos t,y=e^(mt)" show that "],[(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-m^(2)y=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= cos t, y= e^mt show that (1- x^2 ) ( d^2 y)/(d x^2 ) - x (dy/dx) - m^2 y = 0

If y=e^(m sin ^(-1)x) , then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-m^(2)y=0 .

If y = e^(a cos^(-1)x) show that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx) -a^(2)y= 0 . Where -1 le x le 1

If y=e^(a cos^(-1)x),-1<=x<1, show that(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^(a cos^(-1)x),-1<=x<=1, show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^(a cos^(-1)x),-1<=x<=1, show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^("mcos"^(-1)x) , prove that: (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=m^(2)y

If y=e^(a cos^(-1)x),-1<=x<=1 then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=cos^(-1)x , then show that : (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx=0