Home
Class 9
MATHS
(1)/(x)-(1)/(x+b)=(1)/(a)-(1)/(a+b)...

(1)/(x)-(1)/(x+b)=(1)/(a)-(1)/(a+b)

Promotional Banner

Similar Questions

Explore conceptually related problems

The condition that the equation in (1)/(x)+(1)/(x+b)=(1)/(m)+(1)/(m+b) has real root that are equal in magnitude but opposite in sign

(1)/(x+a)+(1)/(x+b)=(1)/(x+a+b)+(1)/(x)

Solve the equations : (1)/(a+b-x)=(1)/(a)+(1)/(b)-(1)/(x)

Solve for 'x' : (1)/(a+b+x)=(1)/(a)+(1)/(b)+(1)/(x) " " a != 0, b!=0, x !=0

Solve: (1)/(a+b+x)=(1)/(a)+(1)/(b)+(1)/(x)

(a)/(ax-1)+(b)/(bx-1)=a+b,x!=(1)/(a),(1)/(b)

Solve for x : (1)/(a + b + x) = (1)/(a) + (1)/(b) + (1)/(x) , a ne b ne 0 , x ne 0 , x ne -(a + b)

Solve the equation: cos^(-1)((a)/(x))-cos^(-1)((b)/(x))=cos^(-1)((1)/(b))-cos^(-1)((1)/(a))

(x^((1)/(a-b)))^((1)/(a-c))(x^((1)/(b-c)))^((1)/(b-a))((1)/(x^(c-a)))^((1)/(c-b))

Expression ((a+1/b)^(1/x)(a-1/b)^(1/x))/((b+1/a)^(1/x)(b-1/a)^(1/x)) is an integer if