Home
Class 10
MATHS
If x=4 cos theta, y=r sin theta Prove th...

If `x=4 cos theta, y=r sin theta` Prove that `x^(2)+y^(2)=r^(2)`

Text Solution

Verified by Experts

The correct Answer is:
`a^(2)= RHS`
Promotional Banner

Topper's Solved these Questions

  • AN INTRODUCTION TO TRIGONOMETRY

    ZEN PUBLICATION|Exercise Exercise 11.1|16 Videos
  • AN INTRODUCTION TO TRIGONOMETRY

    ZEN PUBLICATION|Exercise Exercise 11.2|15 Videos
  • AREA RELATED TO CIRCLES

    ZEN PUBLICATION|Exercise ADDITIONAL QUESTIONS (HIGHER ORDER THINKING SKILLS)|7 Videos

Similar Questions

Explore conceptually related problems

If x=r cos theta, y=r sin theta Prove that x^(2)+y^(2)=r^(2)

x = a cos theta, y = b sin theta .

x = a sec theta + b tan theta and y= a tan theta + b sec theta. Prove that x^(2)-y^(2) = a^(2)-b^(2) .

If x=acos theta ,y=b sin theta,then b^(2)x^(2)+a^(2)y^(2)-a^(2)b^(2) is equal to:

Let 0 leq theta leq (pi)/(2) and x=X cos theta+Y sin theta y=X sin theta-Y cos theta such that x^(2)+4 x y+y^(2)=a X^(2)+b Y^(2) where a, b are constants, then

If x+i y=(1)/(1+cos theta+i sin theta) then x^(2)

If p and q are the lengths of perpendicular from the origin to the lines x cos theta-y sin theta=k cos 2theta and x sec theta+y "cosec" theta=k respectively, prove that p^(2)+4q^(2)=k^(2) .

If x= a cos^(3) theta, y= a sin^(3) theta , then 1 + ((dy)/(dx))^(2) is______

If x = a cos^(3) theta , y = a sin^(3) theta , then 1+((dy)/(dx))^(2) is _______

If a sin^(3) theta + b cos^(3) theta = sin^(3) theta * cos theta and a sin theta - b cos theta=0 , then prove that a^(2)+b^(2)=1 .